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Abstract

The Finite Volume Element (FVE) method combines the exact conservation of finite volumes with
the continuous representation of finite elements. One drawback of this approach is that to evaluate
the coefficients in the equations (the “stencils”), many simple integrals involving unknowns must be
evaluated. This problem is compounded when working with systems of differential equations involving
several different operators and/or variable coefficients. This talk will examine one such project, for which
Maple was used to perform the integrals and much of the algebra in the calculation of the stencils.

1 INTRODUCTION

In ongoing research we are investigating flow in a weld pool, where the temperature variations along the free
surface of the liquid metal pool cause differences of surface tension that drive the flow. These thermocap-
illary effects would be dominant in laser welding, for example. For arc welding the electromagnetic forces
predominate, but even there the thermocapillary forces are dominant near the edge of the pool, because
of the “positive feedback” between the temperature gradient driving the flow and the flow compressing the
thermal gradient [2]. Previous work [1] analyzed this feedback mechanism by isolating the “cold corner”
region where the liquid free surface meets the solid as a model problem.

The current research considers a more realistic model for the whole pool. Here the global heat transfer
problem is considered, which is coupled to the flow in the liquid, to investigate how the thermocapillary
feedback mechanism affects the shape of the solid-liquid interface bounding the pool. This process is modeled
computationally, and the steady solution sought for a wide range of the two governing parameters.

The choice of numerical methods was motivated by the requirements of this problem. The heat balance
is very important both in driving the flow and in determining the shape of the liquid region, so we wanted a
method that exactly satisfies conservation laws. Also, because small local length scales are important along
the pool boundary, which is to be determined in the solution, an adaptive grid was required. The Finite-
Volume-Element (FVE) discretization was chosen, which combined the exact conservation of Finite Volumes
with the continuous representation of Finite Elements. The FVE approach 1s also well suited to our chosen
solver, the Fast Adaptive Composite-Grid (FAC) method for multilevel solution with local refinement.

Implementing this approach on our system of coupled partial differential equations in axisymmetric
geometry necessitated the evaluation of a large number of integrals, to find the coefficients (“stencil”) for
each discrete operator. Maple was used to compute these stencils, which not only saved a great deal of
tedious effort, but also assured accurate results. Without the automation of stencil calculation through
Maple, the FVE discretization would have been far less feasible for this complicated problem.

2 PROBLEM STATEMENT

A half-space of a pure material is subjected to concentrated heating on the flat horizontal surface, giving
a pool of molten material surrounded by solid. The total heat flux () is constant, and far away the solid
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Figure 1: Problem Formulation: a half-space of pure material is subjected to concentrated surface heating
() that results in a molten pool. (Outside the surface heating, the surface is adiabatic.) The melting
temperature is T,,, and far away the solid is at the cooler temperature 7T.. The flat liquid surface is subject
to thermocapillary forcing, which drives convection in the liquid. Axisymmetry is assumed.

approaches the uniform cold temperature T, (see Figure 1). Above the horizontal free surface is an inviscid,
nonconducting gas. Surface tension of the liquid is assumed strong enough to keep the free surface flat
(small Capillary number), but with surface tension variations due to a linear dependence on temperature.
The resulting thermal and flow fields are assumed to be axisymmetric and steady, but the time-dependent
equations are given below, to facilitate a numerical approach using time-like iterations to reach the steady
solution.

Then the system is governed by conservation of energy in the solid and by conservation of energy, mo-
mentum, and mass in the pool. For the numerical solutions, the equations are suitably nondimensionalized,
and a stream-function/vorticity formulation is used for the flow. Then the complete system of dimensionless
equations 1s:
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Here T'1s temperature, t is time, u is the velocity vector with components v and v in the r and z directions
(cylindrical coordinates), w is the vorticity vector (having only one component, in the 9 direction), W is the
axisymmetric stream function, ¢(r) is the imposed surface heat flux (large at » = 0, falling off to zero at
some small value of r, such that fooo q(r)rdr =1), r = f(z,t) gives the position of the solid-liquid interface,
and V,, is the normal velocity of the phase-change interfacewhere n refers to the direction normal to the
interface (outward).

The main dimensionless parameters are the Marangoni number Ma = usd/x = vQ /pkx and the Reynolds
number Re = uyd/v. Their ratio gives the Prandtl number: Pr = v/k = Ma/Re. The other dimensionless
parameter is the ratio of the phase-change and convective time scales, o = t,/t. = YyQL/vk?AT, and so
plays no role in the steady-state solution where V,, — 0. Here uy; = v AT/ is the velocity scale, d = Q/kAT
is the diffusive length scale, « is thermal diffusivity, v (assumed constant and positive) is the negative of the
derivative of the surface tension with respect to temperature, @) is the total heat flux input, u is viscosity,
k is thermal conductivity, v is kinematic viscosity, AT = T,, — T, is the difference between the melting
temperature and the cold temperature far away, and L is the latent heat of fusion.

3 NUMERICAL METHODS

For computational purposes, the idealized problem of an unbounded solid was truncated to a finite domain
in cylindrical coordinates. The boundary condition on this artificial boundary is that the temperature should
decay in the same way as the conduction solution for the point source, that is,

oo__ T (17)
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where R = /1% 4 22 is the spherical coordinate. This asymptotic matching condition is reasonable (for
several diffusion lengths away from the pool) and is far less restrictive than imposing the Dirichlet condition
(T = 0) on the outer boundary.

To calculate the steady state for various values of Ma and Pr, the time-dependent equations are stepped
in time with fully implicit steps, for the advantages of absolute stability and large time steps. Then at each
new time, an elliptic problem must be solved. For this; multilevel methods are used, based on a uniform grid
in the (r, z) quarter-plane and the Fast Adaptive Composite (FAC) grid approach to ensure resolution of all
small-scale local details. At the solid-liquid interface, each grid has irregular elements to fit the interface.
At each time step, the position of the interface is adjusted based on the normal velocity V' from (16). (Note
that the dimensionless parameter « in (16) can be adjusted to control how quickly the interface changes.)
The difference equations on the grid were developed from the Finite Volume Element (FVE) method. This
method combines the exact conservation of mass, momentum, and energy of the finite volume method, with
the flexibility of the finite element method in handling complicated boundary conditions, irregular grids,
etc. (See [3] for an introduction to FAC and FVE methods.) The resulting system of algebraic equations is
solved by line relaxation at each level.

3.1 FVE APPROACH

The Finite Volume Element (FVE) approach to discretizing the system involves decomposing the domain
in two ways: as the union of a set of elements, whose vertices compose the set of grid points on which the
unknowns are defined; and as the union of a set of control volumes, one for each grid point (see Figure 2).
The unknowns are interpolated over each element, based on the values at the grid points, giving a continuous
representation over the whole domain. This representation is used to integrate the conservation equations
over each control volume. Hence, each control volume gives three equations involving the three unknowns at



Figure 2: FVE Grid: the orientation of the triangular finite elements (thin lines) and the square finite
volumes (thick dashed) are shown. On each triangular element, the variables are assumed linear between
the three nodes. This allows consistent calculation of the gradients across the volume boundaries. Note that
this is only a cross section in the (r, z) plane; the volumes extend in the 6 direction to form rings.

the associated grid point, as well as the values at neighboring points. The resulting set of discrete equations
for the finite element representation of the solution satisfies the conservation laws exactly over any volume
made up of the union of control volumes, including the whole domain. (Actually, the boundary conditions
may eliminate some of the control volumes.)

For this axisymmetric problem, each control volume is a toroidal prism, the result of taking a polygonal
cross-section in the (r, z) plane and sweeping it all the way around in the ¢ direction (see Figure 3). Then
integrating the convection-diffusion equation (2) over a control volume, interchanging time derivatives and
spatial integrals, and applying the divergence theorem gives:

d
— // Trdrdz—l—?{ n-(ul) rdl= Ma™?! ?{ n-vV7Trdl (18)
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control
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Figure 3: From axisymmetry, each control volume is a toroidal prism whose cross-section in the (r, z) plane
is a square. Hence the size of the volume depends on radial position.
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Figure 4: Each control volume involves six triangular elements, notated using compass directions.

where the 27 resulting from integration in # has been factored out, A refers to the cross-sectional area
(polygon) of the volume, C refers to the closed curve bounding that cross-section, and n is the unit vector
normal (outward) to C.

For the vorticity (3) and stream function equations (4), the control volume is a vorticity tube, and the
appropriate integral is over the cross-sectional area A (with normal vector é) Then applying Stokes’ theorem

gives:
d . . .
—//wﬂdrdz—?{h(uxw)dl = —Re_ljgt~V><wdl (19)
dt J Ja c c

?fci.udz = //Aw.édrdz (20)

where t is the unit vector tangent to C, in the positive 8 sense.

Except near the phase-change interface, a uniform grid is applied with step size h in both the r and z
directions (see Figure 2). (Portions of this grid may be subdivided into smaller uniform grids by the FAC
method.) Each square of the grid is divided into two triangular elements by a diagonal (in the direction of
increasing r + z), and linear interpolation is used over each triangular element. The control volume cross
sections are squares of side h, centered on each grid point (except for half-squares at the boundaries and
small quarter-squares at the corners).

Then in the integrated conservation equations (18, 19, 20), the area integrals are over six triangular
regions (portions of the six elements), and the line integrals are over four line segments, each having halves
in two different elements (see Figure 4). Then in terms of components, the integrated equations are

i// Trdrdz (21)
dt A

+ a—\Ider—l—/ —a—\Idez—l—/—a—\Ider—l—/ 3_\I!sz
N Or g 02 s Or w 0z
oT oT oT oT
_ -1 il il 7 7
= Ma (Nﬁz rdr+ Earrdz—l—/s P rdr—i—/w a5 rdz)

%//Awdrdz (22)

v w v w v w v w
——dr—l—/———dz—l— ——— —dr+ — —dz
N Or r g Oz r g Orr w 0z r

_ Ow I(rw) 1 Ow I(rw) 1
_ 1 e S 7 N
= fe (Nﬁzdr—i_/E or rdz+ g &zdr—i—/w or rdz

+



—//wdrdz = a—qjldr 3_\11le /—a—qjldr / _8_\1!le (23)
A N Oz 7 w orr

where from here onward, w refers to the one nonzero component of vorticity, and the labels N, £ S, and
W refer to the four line segments of the line integrals by “compass direction” relative to the central node.

3.2 STENCIL CALCULATION WITH MAPLE

The calculation of the integrals and their combination to get the coefficients (stencils) for the discrete
equations was done using Maple to minimize both labor and errors. Here is a brief summary of the methods
used. (The worksheet “calcvort.ms” in the electronic supplement shows all the steps in calculating the
vorticity and stream function equation stencils.)

Initially, my approach involved using subscripts [i, j] to refer to particular points. But Maple (Release 3)
had some bugs in trying to integrate expressions involving indexed names, so I switched to names concate-
nated with suffixes for the “compass direction” relative to the central point, then substituted into indexed
form as the final step. (Unfortunately, I never eliminated the ¢, j arguments from the triangle interpolation
functions, which now do not use them.)

To generate the linear interpolation functions over each triangle, the function plane takes three points
and generates a function for the plane through those points, that is, the resulting function takes two variables
and gives the interpolated (or extrapolated) value of the third.

> plane := proc(xl,yl,z1,x2,y2,22,x3,y3,z3) local a,b,c,x,y;
> unapply (
subs (
solve({
a*xx1l+b*yl+c=z1,
a*xx2+b*y2+c=z2,
a*x3+b*y3+c=z3},
{a,b,c}),
axx+tbxy+c),
> X,y )3
> end:

Each stencil involves interpolation over six triangles in the (r, z) plane; the six triangle functions take
a variable name (such as omega for vorticity) and return the corresponding interpolation function. For
example, the “east-northeast” triangle uses triene (renotated for clarity):

\
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> triene := (i,j,var) -> plane(rp,zp,var._p,rp+h,zp,var._e,rp+h,zp+h,var._ne):
Here the suffix “p” refers to the central point, at position (rp, 2, ), and k is the grid spacing. So triene(omega)
returns the mterpolation based on the nodal values wp,we, wpe.

The interpolations are used in evaluating the integrals. For example, to calculate the vorticity diffusion
stencil (from the last set of terms in (22), with the coefficient Re~!) involves derivatives of the interpolations
with scaling in the radial coordinate r, integrated over the eight segments of the boundary:

> int ( +(D[1] (triene(i,j,omega)) (re,z)+triene(i,j,omega) (re,z)/re), z=zp..zn) +
> int ( +D[2] (trinne(i,j,omega)) (r,zn), r=rp..re) +
> int ( +D[2] (trinw (i, j,omega)) (r,zn), r=rw..rp) +
> int ( -(D[1] (trinw(i,j,omega)) (rw,z)+trinw(i, j,omega) (rw,z) /rw), z=zp..zn) +
> int ( -(D[1] (triwsw(i,j,omega)) (rw,z)+triwsw(i,j,omega) (rw,z)/rw), z=zs..zp) +
> int ( -D[2] (trissw(i,j,omega)) (r,zs), r=rw..rp) +
> int ( -D[2] (trise(i,j,omega)) (r,zs), r=rp..re) +
> int ( +(D[1] (trise(i,j,omega)) (re,z)+trise(i,j,omega) (re,z)/re), z=zs..zp) :
> diffv := simplify(");
where the definitions 7y, = rp—h/2, re :=rp+h/2, 2, == 2, —h/2, 2, := 2z, + h/2 had been made previously.

Such a result still needs some massaging to get it into a useful form. The varlist function returns a list

of the names of the nodal values of the given variable:

> varlist := (var) -> [var.(_sw,_s,_se, W, _p,_e,_nw, _n, ne)l;
> vortlist := varlist (omega);

which can be used to collect terms to get the coefficient of each:

> collect(diffv,vortlist);

> diffv := map(simplify,");
Conversion into indexed notation is accomplished by the function toindex, which replaces the suffixed names
of the specified variable:

> toindex := proc(expr,var) local n,m;
> subs(
> zip( (x,y)->(x=y),



> [var.(_sw,_s,_se,_w,_p,_e, nw,_n,_ne)],
> [seq(seq(var[i+n, j+m] ,n=-1..1) ,m=-1..1)]),
> expr );

> end:

This gives the output in the form

> toindex(diffv,omega) ;

lwi_lyj_lh+lwi7j_1(8rp—|—5h) lwi_lyj(Srp—7h) 1 (32rp? —5Rh%)w;

4 2rp—h 4 2rp+h 4 27p — h 2 (2mp4+h)(2mp—nh)
1wi+17j(8rp—|—7h) lwi7j+1(8rp—5h) 1wi+17j+1h
4 2rp+h 4 2rp—h 4 2rmp+h

Some further simplifications were made by hand, to more clearly show the effects of the radial scal-
ing. Similar calculations were used for the other operators in the equations (and modified versions for the
boundary conditions) to yield the stencils.

3.3 FVE STENCILS

Then at a typical grid point, the discrete equations (using stencil notation) become:
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where [C]¥ = T4+et —ct+e¢m 1—¢ | U, ¢ = hfr, e = 1_2/2, e = 1_:6/2, 1+t = 1—;5/2’
—t -1 5€”
1- = 1+1e/2’ and r 1s the radial coordinate at the central point P. In the stencil notation, for example
a b ¢
d e [ |T, the entries in the matrix (a, b...) are the coefficients of the values the unknown (7') at
g h i

the corresponding points, where the center of the matrix corresponds to the current point P, and r,z are
horizontal and vertical, respectively. Blank entries indicate zero coefficients, and a central ¥ indicates the
sum of all the other coefficients in the matrix. Note that in the nonlinear convective terms, each of the coef-
ficients of T or w is itself expressed as a stencil in ¥ (each centered at the same point P); to save space, the
U is left out of the vorticity convection stencil. Note that for those integrals in » with integrands containing
a 1/r, that factor was pulled outside the integral to avoid logarithms; the error introduced is of the same
order as that due to the piecewise linear representation itself. Also, the heat equation was rescaled by 1/r,
and the stream function equation rescaled by r.

The radial dependence of the coefficients is a direct result of the axisymmetric geometry. This dependence
makes the calculation somewhat more complicated than the corresponding two-dimensional problem. But
far from the axis, where r 3> h and hence € <« 1, the equations approach the corresponding two-dimensional
versions, facilitating comparison.

3.4 Discretized Boundary Conditions

Along the surface z = 0, each of the three boundary conditions for the three unknowns requires different
treatment. The temperature at each grid point along the surface is determined by a heat balance over the
corresponding control volume, with half-square cross section (h x h/2). The contribution of the surface to
the convective flux integral is zero, since there is no velocity normal to the surface, and the contribution of
the surface to the diffusive flux integral is given by the Neumann type boundary condition [ ¢(r)rdr. The
resulting discrete equation is

an (. 2Ty e
1 -1
v v

1
+ 3 2 -1 -1 T

" ] ] ]

1 1 r+h/2

_ -1 11 1,1
= Ma 5— 36 —2 5+ 3¢ T+rMa /T_h/2 q(r)rdr (27)

Here we specify the heat flux as a symmetric function of r that decays smoothly to zero at some finite radius
Pmaz, while satisfying [~ q(r)rdr = 1:

2
6 _r_
g =1 7 [1— (=) ] ) TS Pmaz (28)
0, T > Pmac
For the calculations, we use pp4e = %.
The thermocapillary stress condition at the surface specifies the vorticity: w = %. However, because

of the linear interpolation between grid points, % is not well defined at grid points on the surface. Hence,

for the surface only, the vorticity is specified at half-grid points (i.e., r = (i + %)h), and triangular finite
elements are formed with neighboring points. This keeps the discretization of this important condition at



the same order of accuracy as the other equations, but entails special treatment of the grid points next to
the surface. The surface is also a streamline, where ¥ = 0 (Dirichlet condition). Using that fact and these
special surface vorticity elements gives the following flow equations for points by the surface (a distance h
from the surface):
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Along the z axis, symmetry requires that there 1s no heat flux across the axis, nor flow, nor shear stress,
so both ¥ and w are zero there. Then for points on the axis, the discrete heat balance over the cylindrical
control volumes (half square cross section h/2 x k) gives:
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where the equation was scaled using the average 7 = h/4. The homogeneous Dirichlet conditions on ¥ and
w apply to points on the axis, and for grid points neighboring the axis; the usual stencils apply; no special
treatment is necessary.

The temperature at the grid point at the origin is determined by a small control volume (quarter square
cross section h/2 x h/2) with specified surface heat flux and no flux (nor convection) through the axis:

d 1 5
7 7
i5 3
4 53 |7
dt 24 o1
1
v
1
+— 1 T
2h o
—Ma™? —% 11T = Ma_lz/ q(r)rdr (32)
0

Again, at the origin, both ¥ and w are zero (note the two boundary conditions on vorticity are consistent
at this point, due to the symmetry). Hence, the usual surface flow equations apply to the grid point next to
the origin.

At the far boundaries of the computational domain, the boundary condition on the heat diffusion equation
in the solid is that it decays in the same way as the spherically symmetric solution for a point source:
T T .

R=--R=-T— #-T=3 (33)
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where R = +/r? + z2. This allow the heat flux across the artificial boundary to be computed in terms of the

temperature there, a Robin type boundary condition. Below we give the discrete equations for the two edges

(half-square volumes) and three corners (quarter-square volumes) where this boundary condition is applied.
At the edge where r is at its maximum:

d h’ 11 %_2%56
az| oo o )7
16¢ 27 16¢
11,1
-1 , 2B
—Ma -3¢ —2+5e—35p T =0 (34)

where p = hr/(r? + 2%).
At the edge where z is at 1ts maximum:

dh2 1 3 7 5 3 1 T
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where ¢ = hz/(r? + 2%).
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At the corner where both r and z are maximum:
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At the corner where r = 0 and z 1s maximum:
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At the corner where r is maximum and z = 0:
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3.5 Tracking the Phase-Change Interface

One of the biggest challenges in models of phase change is the tracking over time of the position of the
two-phase interface. As one of the main goals of the current research is the examination of the effects
of thermocapillary convection on the interface shape, great care is necessary in accurately modeling the
geometry and dynamics of the phase change process. However, the details of how the grid is modified near
the interface, and the derivation of appropriate stencils, will not be described here. Suffice it to say that
Maple was again essential in evaluating the integrals to find the coefficients.

4 Results

This is work in progress. To date, the basic equations have been solved assuming the pool is a unit cylinder.
In the conductive limit, the results match the solution caclulated by the Green’s function method, giving
confidence in the method. Implementation of the moving phase-change boundary is underway.

The FVE approach in this problem satisfies the conservation equations exactly while using continuous
representations of the unknowns. The cost for these desirable features it that calculation of the coefficients
is complicated. Maple made this approach much more feasible.
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